

AFRL-IF-RS-TR-2004-275

Final Technical Report
October 2004

DYNAMIC ASSEMBLY, ASSESSMENT,
ASSURANCE, AND ADAPTATION VIA
HETEROGENEOUS SOFTWARE CONNECTORS

University of Southern California at Los Angeles

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. K514

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2004-275 has been reviewed and is approved for publication

APPROVED: /s/

RAYMOND A. LIUZZI
Project Engineer

 FOR THE DIRECTOR: /s/

JAMES A. COLLINS, Acting Chief
Information Technology Division
Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
OCTOBER 2004

3. REPORT TYPE AND DATES COVERED
Final Jun 00 – Jun 03

4. TITLE AND SUBTITLE
DYNAMIC ASSEMBLY, ASSESSMENT, ASSURANCE, AND ADAPTATION
VIA HETEROGENEOUS SOFTWARE CONNECTORS

6. AUTHOR(S)
Barry Boehm and
Nenad Medvidovic

5. FUNDING NUMBERS
C - F30602-00-2-0615
PE - 62301E
PR - DASA
TA - 00
WU - 13

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Southern California at Los Angeles
837 West Downey Way
Los Angeles California 90089-1147

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFTB
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2004-275

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Raymond A. Liuzzi/IFTB/(315) 330-3577/ Raymond.Liuzzi@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
This effort provided innovative capabilities for two key stages of software development. During specification and design
time, component mismatch detection gauges are provided, indicating the particular type, dimension, and value of the
mismatch. This mapped into the taxonomy of software architectural connectors used for resolving the mismatch.
Examples of mappings from the mismatches into the effective classes of connectors included procedure calls, events,
arbitrators, adaptors, and distributors. This effort also developed techniques for specifying and analyzing properties of
product line architectures (PLAs) and extended existing architecture analysis techniques and tools for dynamic
composition and assessment/verification to ensure that the selected components and connectors were appropriately
configured and dynamically integrated into the operational system. For the deployment and run time stage, this effort
focused on application architectures and gauges tailored for distributed, mobile, heterogeneous, and possibly resource
constrained platforms. Several different gauges were provided: 1) gauges for assessing new component versions when
performing component upgrades, 2) gauges for assessing properties of heterogeneous connectors, and finally, 3)
gauges to support awareness and quality of service (QoS) for distributed applications. The research also extended
these gauges based on a problem-driven set of priorities.

15. NUMBER OF PAGES
20

14. SUBJECT TERMS
Knowledge Base, Data Bases, Artificial Intelligence, Software, Information Systems

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

Table of Contents

1 Objectives .. 1
2 Approach.. 2

2.1 Introduction and Motivation ... 2
2.2 Capabilities and Limitations in Current Software Architecture Technology 2
2.3 Key elements of USC-CSE’s approach .. 2

3 Discussion of Tasks ... 4
3.1 Incremental Modeling and Analysis of Architectures for Product Families 4
3.2 Architectural Refinement.. 4
3.3 Assessing the Structural Quality of Product Line Architectures 4
3.4 Prism architectural style and Prism middleware... 5
3.5 Support for Dynamic Assembly, Assessment, and Adaptation of Heterogeneous
Connectors .. 6

4 Accomplishments... 7
4.1 Multi-Versioning Connectors (MVC)... 7
4.2 Architectural modeling and analysis... 7
4.3 Prism middleware ... 8
4.4 Managing architectural evolution ... 9
4.5 Alfa ... 10
4.6 Assessing the Quality of Product Line Architectures 10

5 Technology Transitions ... 12
5.1 Collaboration with other DARPA DASADA contractors 12
5.2 Technology Transition to other non DARPA DASADA efforts 12

6 Homepages... 13
7 Publications.. 13

List of Figures

Figure 1: USC-CSE's DASADA approach... 3
Figure 2. Class design view of the Prism middleware core components............................ 6

 i

1 Objectives

University of Southern California-Center for Software Engineering (USC-CSE's)
dynamic, architecture-based assembly technology provided innovative capabilities during
two key stages of software development. During specification and design time,
component mismatch detection gauges are provided, indicating the particular type,
dimension, and value of the mismatch. This mapped into USC-CSE's taxonomy of
software architectural connectors [1] used for resolving the mismatch. Examples of
mappings from the mismatches into the effective classes of connectors included
procedure calls, events, arbitrators, adaptors, and distributors. USC-CSE developed
techniques for specifying and analyzing properties of product line architectures (PLAs)
[11] and extended existing architecture analysis techniques and tools for dynamic
composition and assessment/verification to ensure that the selected components and
connectors were appropriately configured and dynamically integrated into the operational
system. At the deployment and run time stage, USC-CSE’s support focused on
application architectures and gauges tailored for distributed, mobile, heterogeneous, and
possibly resource constrained platforms [6]. Several different gauges were provided: 1)
gauges for assessing new component versions when performing component upgrades, 2)
gauges for assessing properties of heterogeneous connectors, and finally, 3) gauges to
support awareness and quality of service (QoS) for distributed applications. USC-CSE’s
Dynamic Assembly for Systems Adaptability, Dependability, and Assurance (DASADA)
research extended these gauges based on a problem-driven set of priorities, determined in
concert with a subcontractor, Lockheed Martin.

 1

2 Approach

2.1 Introduction and Motivation

The DARPA DASADA vision involved the orchestrated use of (1) composability gauges
enabling assessment of software component composability needs, (2) component and
connector adaptation mechanisms to enable component composition, (3) verification
mechanisms to ensure trouble-free composition, and (4) dynamic composition
mechanisms for “on-the-fly” system reconstitution. The DASADA research challenge
was to achieve these capabilities in ways that scaled up to large and complex systems, as
well as dynamic and complex situations. That was also the reason why the most attractive
emerging technology area for achieving the DASADA vision was software architecture
and why USC-CSE’s efforts were centered on architecture-based system modeling,
analysis, implementation, deployment, and evolution.

2.2 Capabilities and Limitations in Current Software Architecture Technology

Software architectures provide a simple set of abstractions: components (computational
and data storage elements), connectors (component interaction facilities), and
configurations (interconnections of components and connectors in a system). Of special
interest to the software architecture community are software connectors. Given that the
size, sophistication, and complexity of software components are steadily growing, it is
reasonable to expect that their interactions will become more complex as well.
Connectors facilitate communication, coordination, arbitration, and adaptation of
components [1] and have been shown to directly enable architectural dynamism. In
principle, architectural connectors provide an attractive set of capabilities for achieving
the DASADA vision. USC-CSE’s DASADA work indeed focused on connectors as the
centerpiece of its approach.

2.3 Key elements of USC-CSE’s approach

• USC-CSE’s emphasis on architecture-based software development enabled architects
to detect mismatches, inconsistencies, and inadequacies early in the development
process, thus reducing the overall development costs.

• Support for modeling and analyzing architectures of large and complex software
systems provided developers with the ability to detect design problems early. USC-
CSE focused on this problem by developing notations and their accompanying
toolsets for describing different characteristics of software product families.
Managing evolution of architectural artifacts had an impact on developing
representation and analysis capabilities for product line architectures (PLA).

• Reusable frameworks enabled architects and developers to build their tools such that
they could reuse the communication capabilities of the underlying framework. USC-
CSE created a family of such frameworks to be used for architecture-based design
and development of software systems on distributed, heterogeneous, mobile, and
possibly resource-constrained devices. Communication across the network can be
unpredictable and unreliable. Support for disconnected operations, security, and
reliability at the architectural level was among the aspects supported by USC-CSE’s

 2

frameworks. The frameworks comprised reusable middleware platforms that
substantially aided system development.

• Software deployment techniques enabled managing software systems on the running
platforms. It is important to develop and apply such techniques in an architecture-
centric fashion such that the mapping between the architecture, design, and the
running system can be traced and controlled. USC-CSE focused on developing a
deployment environment that was architecture-aware and provided capabilities for
managing network related problems and their manifestations in the system.

• Measuring system properties at the architectural level is challenging. Defining
metrics for comparing and measuring properties of a system’s architecture was
another focal point of our research.

• Finally, USC-CSE’s research focused on identifying and codifying the fundamental
principles and “atomic” constructs that underlie all software architectures and
architectural styles.

USC-CSE’s efforts in the above areas were all concentrated around the same architectural
concepts and were aimed in providing support for development from modeling
architectures, to analysis, to system implementation, and, finally, evolution. The figure
below shows the high level view that connects all the key elements in our approach.

ComponentThread
ConnectorThread

Architec tureAdapter

Notification Request

Message

Se rializable

IScaffold

Connector
IArchite cture

Archite cture Ev
e ntConstants

ICompone nt

Peer

Component

IConne ctor #top

#bottom

#side

AdminComponent

Architecture

Brick

#scaffold

Address topId

bottomId

side Id

The applications are
deployed in a distributed,
mobile, resource
constrained, heterogeneous
environment using

’s tool .
Prism-DE also enables
device connectivity
monitoring.

USC-
CSE Prism-DE

Distributed Troops Deployment and
Battle Simulation Application

USC-UCI Mae Environment Prism Deployment Environment

Figure 1: USC-CSE's DASADA approach

Component-Based Middleware
(Prism-MW) Tailored to and

Residing on Each Device

Enables
Enables

Architecture-based
modeling and analysis of
versioned product line
architectures is supported
in the environment
developed by
in collaboration with UC
Irvine.

Mae
USC-CSE

G
ui

de
s

Modeled &
Analyzed via

Deployed
via

Leverages

Style-based design idioms are
composed from primitives.

Impact

Alfa

user
request

Comp2

Comp1

Comp3

Conn1Conn1 notify

Arch1Arch1

GaugeGauge
ViewerViewer

spawn
request

Flexible Placement and Visualization
of Application Monitoring and Analysis Gauges

user
request

Impact

Comp2

Comp1

Comp3

Conn1Conn1 notify

Arch1Arch1

GaugeGauge
ViewerViewer

spawn
request

Flexible Placement and Visualization
of Application Monitoring and Analysis Gauges

In
fo

rm
s

Architecture-based application
development is enabled by a light-
weight middleware ()
developed by

Prism-MW
USC-CSE.

 3

3 Discussion of Tasks

3.1 Incremental Modeling and Analysis of Architectures for Product Families

USC-CSE developed a technique and accompanying tool support for specifying
architectures of product families in terms of the key properties of the system (its
structure, behavior, non-functional properties, etc.) [11]. The technique also supported
the partial specification of services of an architectural component. This was
representative of situations in which an OTS component was introduced into a system
with a known interface (API), but unspecified behavior. Providing gauges that would
quickly determine that such a component was not a good fit for the system would
eliminate the costs of (ultimately unsuccessful) integration. A related gauge enabled
automated component discovery and retrieval for insertion into an architecture, based on
the requirements of the surrounding components/connectors and the specified match
precision threshold. Finally, the use of invariants and pre- and postconditions resulted in
a static view of component semantics. This static view was augmented with a dynamic
behavior technique, namely StateCharts [24]. USC-CSE provided a gauge for ensuring
the internal consistency of a given component’s static and dynamic models (i.e., ensuring
that a component’s pre- and postconditions matched its hierarchical state machine).

3.2 Architectural Refinement

Refining an architecture into its implementation in a property-preserving manner was a
challenging task for several reasons. Maintaining traceability of decisions and ensuring
consistency between two software models at different levels of detail is inherently
difficult. Furthermore, different refinement steps may require different modeling
notations, motivating the need to augment (high-level) architectural notations with
(lower-level) design notations [1]. USC-CSE employed the Unified Modeling Language
(UML) for that purpose.

USC-CSE pioneered an approach to relating Architecture Description Language (ADLs)
and UML, resulting in the SAAGE environment. SAAGE provides a set of gauges that
enable automatic transformation of an architectural model (described in USC-CSE’s
C2SADEL language) into a corresponding UML model. Another, emerging aspect of this
work was a framework for ensuring the consistency of multiple views in a software
model. A preliminary prototype implementation of the framework, called UML/Analyzer,
was based on UML as the modeling notation and was used in concert with SAAGE.

3.3 Assessing the Structural Quality of Product Line Architectures

USC-CSE developed several novel metrics to assess the structural quality of product line
architectures. Throughout the evolution of a product line, these metrics would guide the
architect in making more informed architectural decisions. The metrics were based on
the concept of service utilization and were designed to take into account the context in
which individual architectural elements were placed.

 4

3.4 Prism architectural style and Prism middleware

USC-CSE proposed a new architectural style intended for use in architecting complex,
highly distributed, mobile, and resource constrained systems. The software development
in this new setting was referred to as programming-in-the-small-and-many (Prism). The
style has inherent support for architectural monitoring and analysis, distribution,
dynamism, mobility, and disconnected operation. USC-CSE chose to use the existing C2
style as the basis of the Prism style, with three major enhancements to account for a set of
new problems that arose in this novel setting:

• Peer-to-peer interactions

While it is still allowed to have the C2-style vertical topology in Prism architectures
and communication via requests and notifications, a third component port (called
side) and message category (called peer) were introduced. Side ports allowed to
address the relative topological rigidity of C2. They proved particularly effective in
component interactions across devices on a network. In order to maintain component
decoupling, the side ports exchange peer messages through “peer” connectors. Basic
peer connectors have simple message broadcast semantics: a peer message incoming
on any port is forwarded as an outgoing message through all of the connector’s
remaining ports.

• Architectural self-awareness

Prism supports architectures at two levels: application-level and meta-level. The role
of components at the Prism meta-level is to gauge and/or facilitate different aspects of
the execution, dynamic evolution, mobility, and disconnected operation of
application-level components. Application-level and meta-level components execute
side-by-side in Prism. Meta-level components are aware of application-level
components and may initiate interactions with them, but not vice versa. The Prism
style rules apply to both component categories: meta-level components also engage in
connector-mediated, message-based interactions with each other (and with
application-level components).

In support of this two-level architecture, Prism distinguishes among four types of
messages. Similarly to C2, ApplicationData messages are used by application-level
components to communicate during execution. The other three message types,
ComponentContent, ArchitecturalModel, and SystemMonitoring, are used by Prism
meta-level components. ComponentContent messages contain mobile code and
accompanying information (e.g., the location of a migrant component in the
destination configuration); ArchitecturalModel messages carry information needed to
perform architecture-level analyses of prospective Prism configurations; finally,
SystemMonitoring messages supply runtime data to Prism gauges.

• Border connectors

The third significant departure from C2 in formulating the Prism style is the key role
of connectors that span device boundaries. Such connectors, called border
connectors, enable the interactions of components residing on one device with
components on other devices. The high degrees of distribution and mobility, as well

 5

as the high probability of disconnected operation in Prism architectures created a need
to place special importance upon border connectors. A single border connector may
service network links to multiple devices. A border connector marshals and
unmarshals data, code, and architectural models; dispatches and receives messages
across the network; and monitors the network links for disconnection. It may also
perform data compression for efficiency and encryption for security.

Prism’s middleware, Prism-MW, comprises an extensible framework of implementation-
level classes representing the key elements of the Prism style (e.g., components,
connectors, messages) and their characteristics (e.g., a message has a name and a set of
parameters). An application architecture is then constructed by instantiating and/or
extending the appropriate classes in Prism-MW with application-specific detail.

Figure 2. Class design view of the Prism middleware core components

3.5 Support for Dynamic Assembly, Assessment, and Adaptation of Heterogeneous
Connectors

USC-CSE identified primitives for representing various architectural styles at an
“architectural assembly” level. These primitives form an assembly language for
architectures, Alfa, which can be used to construct various architectural styles. There are
four architectural styles based on Alfa that were successfully modeled and implemented:

 6

Client-Server, pipe-and-filter, C2, and push-based. The models indicated that it was
possible to construct various architectural styles, as well as various connectors used
within different styles, out of the same primitives, and that there were repeating patterns
across styles.

4 Accomplishments

On the runtime side of USC-CSE’s research, software connectors were upgraded to
enable runtime adaptation of an application by modifying its architectural model. USC-
CSE provided a light-weight infrastructure for prototyping and implementing
architectures, in which connectors remain explicit entities and the relationship between
the architectural model and the implementation is maintained. It also provided runtime
gauges that identify circumstances under which dynamic manipulation of connectors may
and may not be safely performed.

The rest of this section describes the major accomplishments. The complete list of
publications is given in Section 7.

4.1 Multi-Versioning Connectors (MVC)

Representative of runtime monitoring gauges are multiversioning gauges, which monitor
and analyze different versions of the same component that co-exist in a system and
execute in parallel [10]. USC-CSE developed connectors that allowed flexible insertion
of new component versions and multicasting of invocations and data to both the old and
new versions; furthermore, the invocations and data originating from the multiple
versions of the same component must be merged by the connector before they are
forwarded to their target components. The multiversioning connectors are equipped with
gauges enabling them to gather and evaluate each component’s runtime behavior to
determine properties such as correctness, performance, and reliability.

USC-CSE designed and implemented a preliminary version of multi-versioning software
connectors (MVCs), used to gauge and ensure reliable upgrades of components at system
runtime. These gauges directly aid the large, complex, long-lived systems undergoing
continuous upgrades. Lockheed Martin expressed their interest in employing MVCs in
their TBMCS system. National Reconnaissance Office also expressed initial interest in
this capability.

4.2 Architectural modeling and analysis

USC-CSE made several enhancements to the existing USC-CSE’s DRADEL
environment for architecture-based modeling, analysis, and implementation of software
systems. A type checking mechanism was developed to gauge the interface and behavior
match between a given, possibly only partially modeled component and a target
collection of components within an architecture. USC-CSE also developed a gauge to
measure the consistency of a static model of a system's architecture described in the
C2SADEL architecture description language (ADL), which utilized invariants and pre-
and post-conditions, with the architecture's StateCharts dynamic model, which utilized
states, transitions, events, and actions. USC-CSE also collaborated with Jet Propulsion

 7

Laboratory (JPL) in applying this technology to their Mission Data Systems (MDS)
project.

USC-CSE also focused on the study of the techniques for specifying components'
behavior. Component modeling was categorized in the following way:
1. structural (interfaces),
2. static behavior (pre- and post- conditions, invariants),
3. dynamic behavior (extended FSM notation that describes internal functionality of the

component), and
4. interaction protocols.

4.3 Prism middleware

USC-CSE extended the Prism-MW middleware with several properties that were
specifically intended to support development of highly-distributed, highly-mobile and
resource constrained applications. These include efficiency, mobility, dynamic
reconfigurability, awareness, and graceful degradation. The middleware was
implemented in Java KVM, Java JVM, and Embedded Visual C++ and had been tested
both on desktop (PC) and hand-held (Palm Pilot and Windows-CE compatible) platforms.
USC-CSE enhanced this middleware with special-purpose, inter-device software
connectors, including XML-based and infrared connectors. Several optional features for
inter-device connectors were also implemented, such as data compression, security, and
support for real-time message delivery. These connectors are equipped with gauges to
measure their own throughput and load. These new versions of the middleware
complemented the existing USC-CSE middleware versions implemented for the
Windows and Unix platforms to allow architecture-based implementation, deployment,
monitoring, and dynamic manipulation of applications in a distributed, mobile, and
heterogeneous setting. Such a setting is commonly present in military applications, such
as the USC-CSE prototype distributed troops deployment and battle simulation
application. Both Lockheed Martin and the US Army TACOM group expressed a strong
interest in this technology. Prism-MW was extensively and successfully evaluated by
Lockheed Martin for possible use in their AWACS system.

• Support for disconnected operation

USC-CSE’s approach to the problem of disconnected operation proposed migrating
components from neighboring hosts to a local host before the disconnection occurred.
The set of components to be migrated is chosen such that it maximizes the autonomy of
the local subsystem during disconnection, stays within the memory constraints posed by
the device, and can be migrated within the time remaining before disconnection occurs.

USC-CSE implemented an extension of a Border Connector to support disconnected
operation. The Border Connector utilizes a degraded mode indicator for each operation
exported by a component. The indicator is intended to reflect an operation’s dependence
on component state: some operations do not depend on component state and are fully
accessible during disconnection (allowed); other operations are delayed until the
connection is restored; finally, access to yet other operations is disallowed.

 8

• Deployment Support
USC-CSE designed and implemented a prototype system deployment environment,
Prism-DE. The environment integrates Microsoft’s Visio tool as a graphical front-end for
specifying the deployment configurations. A deployment configuration is specified as a
set of target hardware hosts, a set of processes that will run on these hosts, and a software
(architectural) configuration that needs to be deployed onto each one of the processes.
The environment ensures the validity of specified configurations before the automated
deployment is performed, and provides monitoring of connectivity between specified
hardware hosts.

• Delivery Guarantees

USC-CSE’s architectural middleware technology also provides support for connectors
that handle messages with different delivery policies: at least once, at most once, best
effort, and exactly once. By introducing priority-based scheduling of messages it was
possible to provide support for handling messages with both soft and hard real-time
delivery constraints. Different scheduling algorithms are used for periodic and aperiodic
messages. Moreover, various gauges are used with USC-CSE connectors: they
demultplex and dispatch incoming messages using request and notification filtering.

• Security

Secure communication in USC-CSE’s architectural middleware technology was achieved
by using composite connectors that encapsulated various security services. USC-CSE
developed authentication, authorization, encryption, and message integrity modules that
might be added to an arbitrary connector. These services were gauged using various
cryptographic algorithms.

• Distributed Computing
USC-CSE developed a simulation of distributed environments to be hosted on Prism-
MW. The environment provides simulation of distributed network comprising of a given
number of hardware hosts, with varying properties (e.g., memory capacity of each host,
network bandwidth and reliability of connectivity between hosts). Additionally, each host
is capable of running a given set of software components, whose memory requirements
and frequency of interaction can be varied.

4.4 Managing architectural evolution

USC-CSE developed a novel approach for managing architectural evolution. The existing
DRADEL environment was integrated with UC Irvine's Ménage xADL 2.0 technologies.
The result was an architectural evolution environment, called Mae, that enabled architects
to specify, model, and analyze architectures of product families. Mae brings together
architecture based software development and configuration management (CM). It also
provides the architect with capabilities to manage the evolution of architectural artifacts.
This is done by designating components, connectors, and their interfaces as optional or
variant, and bringing versioning schemas to the level of architectural artifacts. Mae
utilizes behavioral invariants and pre- and post-conditions as well as specification of a

 9

system’s configuration to analyze the system’s architectural model for possible
inconsistencies and inadequacies. This reduces the development costs by detecting faults
early in the development process.

4.5 Alfa

USC-CSE implemented a framework for the Alfa architectural assembly language using
Java. The framework supports a dynamic architectural model and allows dynamic
adaptation of software connectors corresponding to a variety of architecture styles. The
framework implementation allows users to verify the suitability of such an assembly
language, and construct an experimental model for the use of Alfa. Further, the models of
the client-server, pipe-and-filter, C2, and push-based styles expressed in Alfa were
implemented in Java using the Alfa framework. These implementations verified USC-
CSE’s models, and provided useful assessment of the approach in terms of framework
properties.

USC-CSE also implemented an experimental database management system using these
frameworks. The database was implemented using a combination of different kinds of
connectors including object-oriented method calls, Alfa-level messages and calls, as well
as Client-Server protocols. USC-CSE successfully completed adaptation of the system to
different connectors using the Alfa framework and the implementation of the Alfa-Client-
Server framework.

The Alfa framework was also applied to network-based architectural styles. The basis of
this research was the observation that architectural styles shared many underlying
concepts. These shared concepts lead to “architectural primitives” that can be
systematically and constructively composed to obtain elements of architectural styles.
Total of eight forms and nine functions were identified as architectural primitives since
they reflected the syntactic and semantic characteristics of a large number of styles.
While proving such a hypothesis was difficult in the general case, USC-CSE
demonstrated it within the domain of network-based styles. Partial formal models of style
elements composed from these architectural primitives were also constructed using Alloy
and shown to be analyzable.

USC-CSE also created an extensible notation, xAlfa, for precisely composing
architectural styles in the Alfa framework. This notation was also used to construct
architectures using architectural styles, as well as implement them using programming
languages and style-compliant middleware. This notation was integrated with the xADL
architecture description language in order to allow rapid development of associated tools.

4.6 Assessing the Quality of Product Line Architectures

USC-CSE developed several novel metrics to assess the structural quality of product line
architectures. Throughout the evolution of the product lines, these metrics would guide
the architect in making more informed architectural decisions. The metrics are based on
the concept of service utilization and are designed to take into account the context in
which individual architectural elements are placed [11].

 10

USC-CSE evaluated these metrics in the context of different case studies. The first case
study was a two-semester project course for computer science graduate students at the
University of Southern California (USC). Assigned teams developed a variety of digital
library applications for a real client, the Library Information Services Division (ISD) at
USC. About sixty such applications were developed, comprising several distinct product
lines [16]. Compared to the existing evaluations of the involved architectures by the
project customers and course instructors, USC-CSE’s service utilization metrics’ values
of this case study indicated that low values were a sign of low quality. This was also
confirmed with the project-based rankings assigned to these projects. Additionally,
alternative architectural solutions were tested based on the values generated by the
proposed metrics. For some of these solutions, the utilization values of certain
components were increased, hence increasing the quality of the product line overall.

In addition to the structural quality, USC-CSE also investigated other relevant
measurable quality attributes. Architectural vulnerability was selected as a potential
quality attribute. Architectural vulnerability assessment is the architectural examination
of a system to identify the critical architectural elements (machines, components,
methods, etc.) that may be at risk (a particular threat that will exploit a weakness in the
architectural elements based on the resource access-levels these elements are granted)
from an attack. As the software systems are becoming more decentralized and distributed,
assessing quality attributes relevant to the system security is even more meaningful.
Furthermore, the basic principles of USC-CSE’s approach relied on two concepts:
permissions granted to the service elements (e.g. public interface methods), and the
deployment of these service elements (e.g. which components reside on which machines).

 11

5 Technology Transitions

5.1 Collaboration with other DARPA DASADA contractors

• USC-CSE collaborated with University of California at Irvine (UCI), Carnegie
Mellon University (CMU), and Teknowledge on formalizing and assessing the
strengths and shortcomings of the Unified Modeling Language (UML) in supporting
architecture-based software development. This would enable software developers, in
industry and academia, to specify, architect, and design software systems more
accurately, and detect problems earlier during the development process. All this
would result in the reduction of the development cost for a software system.

• USC-CSE also collaborated with UCI, the University of Colorado at Boulder, and the
University of Oregon, the goal of which was to assess the ability of combined
capabilities to address problems faced by Lockheed Martin’s AWACS system.

• Finally, the development of the Mae system for architectural evolution discussed
above was a major collaboration effort between UCI and USC-CSE primarily, with
CMU’s contribution housed in the development of the underlying xADL
infrastructure used to integrate USC’s DRADEL and UCI’s Ménage tools.

5.2 Technology Transition to other non DARPA DASADA efforts

• In late 2000 USC-CSE completed the integration of the UML/Analyzer tool with
Rational Rose, a commercial UML modeling tool, for the purpose of using them to
create and modify modeling diagrams. Rational Rose models are converted through
an automated process into a system model called UML-A where they are analyzed via
UML/Analyzer. Transformed modeling information as well as identified model
inconsistencies can be fed back into Rational Rose for visualization. The concepts
behind UML/Analyzer were developed in collaboration with the Rational Software
Corporation. Additionally, Rational implemented a version of USC-CSE’s
UML/Analyzer tool under the name Rose/Architect. For more information on
UML/Analyzer please visit
http://www.if.afrl.af.mil/tech/programs/dasada/tools/umlanalyzer.html.

• Lockheed Martin evaluated the Prism-MW in the context of their AWACS project.
This evaluation indicated that Prism-MW was efficient and suitable for use in the
AWACS project.

• USC-CSE’s architectural model-to-StateChart consistency rules were evaluated by
the Jet Propulsion Laboratory (JPL) as a possible aid for their envisioned architectural
testing framework in the MDS project. Furthermore, the Mae environment for
managing architectural evolution was evaluated by JPL’s MDS group. The
collaboration with JPL resulted in a prototype of integrated architectural analysis and
testing gauges.

• Our collaboration with UC Davis focused on their expertise in software security
applied to USC-CSE’s architectural connectors.

 12

http://www.if.afrl.af.mil/tech/programs/dasada/tools/umlanalyzer.html

• USC-CSE established a collaborative relationship with US Army TACOM, who
acted as early evaluators of USC-CSE’s Prism technology for use in their ground
vehicle systems.

• Finally, USC-CSE started collaborating with Boeing Anaheim, who have expressed
particular interest for USC’s DASADA technology for use in their on-going Future
Combat Systems (FCS) project.

6 Homepages

Center for Software Engineering, University of Southern California
• http://sunset.usc.edu

DASADA project homepage
• http://sunset.usc.edu/research/DASADA

Software Architecture Research Group
• http://sunset.usc.edu/~softarch

7 Publications

1. Nikunj R. Mehta, Nenad Medvidovic, and Sandeep Phadke. “Towards a
Taxonomy of Software Connectors.” In Proceedings of the 22nd International
Conference on Software Engineering (ICSE 2000), pages 178-187, Limerick,
Ireland, June 4-11, 2000.

2. Nenad Medvidovic, Rose F. Gamble, and David S. Rosenblum. “Towards
Software Multioperability: Bridging Heterogeneous Software Interoperability
Platforms.” In Proceedings of the Fourth International Software Architecture
Workshop (ISAW-4), pages 77-83, Limerick, Ireland, June 4-5, 2000.

3. Paul Gruenbacher, Alexander Egyed, and Nenad Medvidovic. “Dimensions of
Concerns in Requirements Negotiation and Architecture Modeling.” In
Proceedings of the Workshop on Multi-Dimensional Separation of Concerns in
Software Engineering, Limerick, Ireland, June 6, 2000.

4. Alexander Egyed, Nenad Medvidovic, and Cristina Gacek. “A Component-Based
Perspective on Software Mismatch Detection and Resolution.” IEE Proceedings –
Software Engineering, vol. 147, no. 6, pages 225-236 (December 2000).

5. Rohit Khare, Michael Guntersdorfer, Peyman Oreizy, Nenad Medvidovic,
Richard N. Taylor. “xADL: Enabling Architecture-Centric Tool Integration With
XML.” In Proceedings of the 34th Hawaii International Conference on System
Sciences (HICSS-34), Maui, Hawaii, January 3-6, 2001.

6. Nicolas Rouquette, Nenad Medvidovic, and David Garlan. “Dependable
Autonomous Systems = knowing well what to do + knowing how to do it well.”
In Proceedings of the NASA High Dependability Computing Consortium
Workshop, NASA AMES, Moffet Field, CA, January 10-12, 2001.

 13

http://sunset.usc.edu/
http://sunset.usc.edu/research/DASADA
http://sunset.usc.edu/~softarch

7. Nenad Medvidovic and Marija Rakic. “Exploiting Software Architecture
Implementation Infrastructure in Facilitating Component Mobility.” In
Proceedings of the Workshop on Software Engineering and Mobility, Toronto,
Canada, May 13-14, 2001.

8. Alexander Egyed, Paul Gruenbacher, and Nenad Medvidovic. “Refinement and
Evolution Issues in Bridging Requirements and Architecture – The CBSP
Approach.” In Proceedings of the From Software Requirements to Architectures
Workshop (STRAW 2001), Toronto, Canada, May 14, 2001.

9. Marija Rakic and Nenad Medvidovic. “Run-time Support for Architecture-Level
Configuration Management.” In Proceedings of the Tenth International Workshop
on Software Configuration Management (SCM-10), Toronto, Canada, May 14-15,
2001.

10. Alexander Egyed and Nenad Medvidovic. “Consistent Architectural Refinement
and Evolution Using the Unified Modeling Language.” In Proceedings of the
Workshop on Describing Software Architecture with UML, Toronto, Canada, May
15, 2001.

11. Marija Rakic and Nenad Medvidovic. “Increasing the Confidence in Off-the-Shelf
Components: A Software Connector-Based Approach.” In Proceedings of the
2001 Symposium on Software Reusability (SSR 2001), pages 11-18, Toronto,
Canada, May 17-19, 2001.

12. Nenad Medvidovic, Paul Gruenbacher, Alexander Egyed, and Barry W. Boehm.
“Software Model Connectors: Bridging Models across the Software Lifecycle.” In
Proceedings of the 13th International Conference on Software Engineering and
Knowledge Engineering (SEKE 2001), pages 387-396, Buenos Aires, Argentina,
June 13-15, 2001.

13. Paul Gruenbacher, Alexander Egyed, and Nenad Medvidovic. “Reconciling
Software Requirements and Architectures: The CBSP Approach.” In Proceedings
of the 5th IEEE International Symposium on Requirements Engineering (RE’01),
Toronto, Canada, August 27-31, 2001.

14. Lei Ding and Nenad Medvidovic. “Focus: A Light-Weight, Incremental Approach
to Software Architecture Recovery and Evolution.” In Proceedings of the 2001
Working IEEE/IFIP Conference on Software Architectures (WICSA 2001),
Amsterdam, the Netherlands, August 27-29, 2001.

15. Andre van der Hoek, Marija Mikic-Rakic, Roshanak Roshandel, and Nenad
Medvidovic. “Taming Architectural Evolution.” In Proceedings on the Joint 8th
European Software Engineering Conference and 9th ACM SIGSOFT Symposium
on the Foundations of Software Engineering (ESEC/FSE 2001), Vienna, Austria,
September 10-14, 2001.

16. Ebru Dincel, Nenad Medvidovic, and Andre van der Hoek. Measuring Product
Line Architectures. In Proceedings of the 4th International Workshop on Product
Family Engineering (PFE-4), Bilbao, Spain, October 3-5, 2001.

17. Nenad Medvidovic and Marija Mikic-Rakic Programming-in-the-Many: A
Software Engineering Paradigm for the 21st Century. Workshop on New Visions

 14

for Software Design and Productivity: Research and Applications, Nashville,
Tennessee, December 2001.

18. Roshanak Roshandel and Nenad Medvidovic. Coupling Static and Dynamic
Semantics in an Architecture Description Language. Working Conference on
Complex and Dynamic System’s Architecture (CDSA 2001), Brisbane, Australia,
December 2001.

19. Nenad Medvidovic, David S. Rosenblum, Jason E. Robbins, and David F.
Redmiles. Modeling Software Architectures in the Unified Modeling Language.
ACM Transactions on Software Engineering and Methodology, January 2002.

20. Roshanak Roshandel and Nenad Medvidovic, Static and Dynamic Modeling of
Architecture, in GSAW Sixth Ground System Architectures Workshop, The
Software Aerospace Corporation El Segundo, CA, February, 2002.

21. Marija Mikic-Rakic and Nenad Medvidovic. Architecture-Level Support for
Software Component Deployment in Resource Constrained Environments. In
Proceedings of CD 2002, Berlin, Germany, June 2002.

22. Nenad Medvidovic. On the Role of Middleware in Architecture-Based Software
Development. In Proceedings of the The Fourteenth International Conference on
Software Engineering and Knowledge Engineering, Ischia, Italy, July 15-19,
2002.

23. Nenad Medvidovic, Nikunj R. Mehta and Marija Mikic-Rakic. A Family of
Software Architecture Implementation Frameworks. In Proceedings of the 3rd
IFIP Working International Conference on Software Architectures, Montreal,
Canada, August 2002.

24. Ebru Dincel, Nenad Medvidovic, Andre van der Hoek. An example product line
architecture: Digital Library Projects, USC Center for Software Engineering
Technical Report, USC-CSE-2002-505.

25. Ebru Dincel, Nenad Medvidovic, Andre van der Hoek. An example product line
architecture: Troops Deployment System, USC Center for Software Engineering
Technical Report, USC-CSE-2002-506.

26. Ebru Dincel, Nenad Medvidovic, Andre van der Hoek. An example product line
architecture: The Library System, USC Center for Software Engineering
Technical Report, USC-CSE-2002-507.

27. Marija Mikic-Rakic and Nenad Medvidovic. Middleware for Software
Architecture-Based Development in Distributed, Mobile, and Resource-
Constrained Environments. TR USC-CSE-2002-508.

28. M. Mikic-Rakic, N. Mehta, and N. Medvidovic. Architectural Style Requirements
for Self- Healing Systems. Proceedings of the 1st International Workshop on Self-
Healing Systems (WOSS’02), Charleston, SC, November 2002.

29. N. R. Mehta and N. Medvidovic. Understanding Software Connector
Compatibilities Using a Connector Taxonomy. Appeared in Proceedings of First
Workshop on Software Design and Architecture (SoDA'02), December 2002,
Bangalore, India

 15

30. Nenad Medvidovic and Vladimir Jakobac. “A Focused Approach to Software
Architectural Recovery,” Ground Systems Architectures Workshops GSAW 2003,
Manhattan Beach, CA, March 2003.

31. Marija Mikic-Rakic and Nenad Medvidovic. A Connector-Aware Middleware for
Distributed Deployment and Mobility. Proceedings of ICDCS Workshop on
Mobile Computing Middleware (MCM'03), Providence, Rhode Island, May 2003.

32. Marija Mikic-Rakic and Nenad Medvidovic. Towards a Framework for
Classifying Disconnected Operation Techniques. Proceedings of ICSE Workshop
on Software Architectures for Dependable Systems, Portland, Oregon, May 2003.

33. Marija Mikic-Rakic and Nenad Medvidovic. Adaptable Architectural Middleware
for Programming-in-the-Small-and-Many. Proceedings of ACM/IFIP/USENIX
International Middleware Conference, Brazil, June 2003.

34. Nenad Medvidovic, Marija Mikic-Rakic, Nikunj Mehta, and Sam Malek.
Software Architectural Support for Handheld Computing. Cover feature in IEEE
Computer, September 2003.

35. Nenad Medvidovic, Marija Mikic-Rakic, and Nikunj Mehta. Improving
Dependability of Component-Based Systems via Multi-Versioning Connectors.
Architecting Dependable Systems, Springer-Verlag. Lecture Notes in Computer
Science (LCNS 2677). R. de Lemos, C. Gacek, and A. Romanovsky (Eds.), 2003.

36. Nenad Medvidovic, Marija Mikic-Rakic and Sam Malek. Software Architectures
for Embedded Systems. In Proceedings of Monterey Workshop Series, Workshop
on Software Engineering for Embedded Systems: From Requirements to
Implementation. Chicago, Illinois, September 2003.

37. Nikunj Mehta and Nenad Medvidovic. Composing architectural styles from
architectural primitives. In Proceedings of ESEC FSE 2003, Finland, Helsinki,
September 2003.

38. Nikunj Mehta. Composing network-based architectural styles from architectural
primitives. In Proceedings of ESEC FSE 2003 Doctoral Symposium, Finland,
Helsinki, September 2003.

39. Roshanak Roshandel and Nenad Medvidovic, Modeling Multiple Aspects of
Software Components, in Proceeding of workshop on Specification and
Verification of Component-Based System, ESEC-FSE03, Helsinki, Finland,
September 2003.

40. Roshanak Roshandel, Mae: An Architectural Evolution Environment, Research
Demonstration, in Proceeding of workshop on Specification and Verification of
Component-Based System, ESEC-FSE03, Helsinki, Finland, September 2003.

 16

	Objectives
	Approach
	Introduction and Motivation
	Capabilities and Limitations in Current Software Architectur
	Key elements of USC-CSE’s approach

	Discussion of Tasks
	Incremental Modeling and Analysis of Architectures for Produ
	Architectural Refinement
	Assessing the Structural Quality of Product Line Architectur
	Prism architectural style and Prism middleware
	Support for Dynamic Assembly, Assessment, and Adaptation of

	Accomplishments
	Multi-Versioning Connectors (MVC)
	Architectural modeling and analysis
	Prism middleware
	Managing architectural evolution
	Alfa
	Assessing the Quality of Product Line Architectures

	Technology Transitions
	Collaboration with other DARPA DASADA contractors
	Technology Transition to other non DARPA DASADA efforts

	Homepages
	Publications

